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We report on non-mean-field and ring-kinetic-theory calculations of both the 
momentum autocorrelation function and the collective diffusion coefficient in a 
diffusive lattice gas automaton. For both quantities the ring approximation is 
calculated exactly. A saddle point method yields a leading t -2 and a subleading 
t s/2 long-time tail in the momentum autocorrelation function. The ring kinetic 
corrections to the mean field value of the diffusion coefficient are in good 
agreement with computer simulations. 

KEY W O R D S :  Collective diffusion; momentum autocorrelation; ring kinetic 
theory; long-time tails. 

1. I N T R O D U C T I O N  

Collective diffusion refers to the random motion of the center of mass 
X(t) of all particles in systems where the total momentum Px(t) is not 
conserved, whereas self-diffusion or tagged particle diffusion is related to 
the random motion of a single particle. 

For  sufficiently long times such motion can be characterized by 
Einstein's formula for the mean-square displacement. In the former case 
one has ((Z(t)-X(O))2)~2At, where A is essentially the collective 
diffusion coefficient. In the latter case one has ((xs(t)-xAO)) 2) ~-2Dst, 
where Ds is the coefficient of self-diffusion and x, the spatial coordinate of 
the tagged particle. 

The collective diffusion equation describes the time evolution of the 
probability distribution for X-displacements or the relaxation of spatial 
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inhomogeneities in the density distribution p on large spatial and temporal 
scales. It is the analog of the Navier-Stokes equation that describes the 
decay of the local momentum density pu in systems with momentum- 
conserving dynamics on similar scales. 

Colloidal particles are one of the most important examples of inter- 
acting systems showing collective diffusion. (1) The lattice gas to be studied 
in this paper may be considered as a caricature of such a system. It has 
been introduced by Boghosian and Levermore ~2) and represents a system of 
interacting particles whose dynamics contains the standard ingredients of 
lattice gas automata (LGA)--a collision step and a propagation step--and 
leads to diffusive behavior at the macroscopic level. 

The goal of this paper is to investigate the consequences of the 
breakdown of the molecular chaos assumption, to analyze in a quantitative 
manner the importance of dynamic correlations on transport coefficients 
and time correlation functions in such systems, and to support the theore- 
tical results by computer simulations. Recently the collective diffusion 
coefficient has also been studied by Taylor and Boghosian. ~3) 

The molecular chaos assumption leads to the standard Boltzmann or 
mean field equation. In a recent publication Kirkpatrick and Ernst (4) have 
developed the ring kinetic theory for LGA which enables us to calculate 
the ring diagrams or one-loop corrections to the Boltzmann value for the 
transport coefficients. The absence of molecular chaos is also responsible 
for long-time tails in the time correlation functions of the Green Kubo 
formulas. Our exact evaluation of the ring diagrams at finite times allows 
us also to calculate the long-time tails in the momentum autocorrelation 
function (Px(t)  P~(O) ). 

As is well known, the long-time tail in fluid-type models has the form 
+at -a/2, where d is the dimensionality and a a positive constant. However, 
in purely diffusive systems, such as Lorentz gases with static scatterers or 
the present type of model for collective diffusion, the long-time tail has the 
form - a t  -(d+2)/2. This difference is essentially caused by the absence, in 
purely diffusive systems, of a slow mode with a vector character, such as 
the shear modes in fluids. 

The plan of this paper is as follows: in Section 2 the microdynamic 
equation is constructed, and a Green-Kubo formula derived for the coef- 
ficient of collective diffusion. Section 3 develops the mean field and the ring 
kinetic theory. The ring integral is evaluated analytically in Section 4 for all 
times. In Section 5 the asymptotic behavior is evaluated with the help of a 
saddle point method. Section 6 presents the comparison of theory and com- 
puter simulations, and we conclude in Section 7 with a brief discussion. 
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2. DIFFUSIVE LGA 

Consider a two-dimensional square lattice 5r consisting of V= L • L 
sites with periodic boundary conditions. Every node r ~ 5~ has four nearest 
neighbors r + e ~ ( i = 0  ..... 3). The velocity channels eg are eo-- (1 ,0) ,  
el = (0, 1 ), e 2 = ( -  1, 0), and e3 = (0, - 1  ). The direction parallel to e 0 will 
be referred to as the x direction. 

The lattice contains p V particles. The microstate of the system at time 
t (t = 0, 1, 2,...) is described by the set of (precollision) occupation numbers 
{hi(r, t)}, where n~(r, t ) =  1 or 0 denotes the presence or absence of a 
moving particle at site r with velocity e,. at time t just before collision. Thus 
there are 2 4= 16 possible states per node. 

The time evolution of the LGA is deterministic. It consists of collisions 
and propagation. The collisions change the precollision occupation numbers 
ni(r, t) instantaneously into postcollision occupation numbers n~(r, t), 
where collision rules are illustrated in Fig. 1. If two particles meet with 
input velocities at right angles, their velocities are reversed, provided the 
output channels are empty. In all other cases the velocities of the particles 
remain unchanged. After the collision step follows the propagation step, in 
which a particle in channel ei at node r is moved to position r + e~, so that 
ni(r + ei, t +  1) = n~(r, t). 

Formally the time evolution is described by the microdynamic 
equation 

ni(r + ci, t +  1) = ni(r, t) +/~(n(r, t)) ( i=  0,..., 3) (2.1) 

where a single time step in the evolution of the automaton consists of the 
combined collision and propagation step. In the present paper we only use 
the precollision occupation numbers ne(r, t), and discard the postcolli- 
sion ones, n~(r, t). Of course a completely equivalent description of the 
dynamics might be given in postcollision occupation numbers. 

l I 
I 

1 i 
1 

precoUisional state postcoUisional state 

Fig. 1. Basic collision rules. Arrows represent occupied channels, dashed lines empty ones. 



50 Van Roij and Ernst 

The nonlinear collision operator can be constructed from Fig. 1 and 
reads 

I i ( n )  = ni+ zn i+ ln in i+  3 - n in i+  3ni+ 2~i+ l 

-[- h i +  2 h i +  3~lini+ 1 -- n in i+  1~i+  2/~i+ 3 

= (ni+2 - ni)(ni+ 1 + ni+3 - 2ni+ lni+3) (2.2) 

where ~i = (1 - - h i ) .  
One of the consequences of this purely local collision rule is that the 

total number of particles moving along any line (either horizontal or verti- 
cal) is conserved, whereas total momentum is not conserved in general. 
There are many sites with noninteracting two-, three-, and four-particle 
encounters that trivially conserve the total momentum per  node. It is the 
frequency of the interacting collisions in Fig. 1 that determines the mean 
free time to and the mean free path lo. The total momentum is a decaying 
quantity on spatial and temporal scales large compared to I o and to, 
respectively. 3 

The lack of conservation of momentum and the existence of so many 
spurious invariants disqualify this cellular automaton as a fluid model. The 
density of particles moving along a line satisfies in fact a one-dimensional 
diffusion equation, as was shown in ref. 2 in a mean field picture. 

The equilibrium density is the stationary solution of Eq. (2.1), i.e., 
//(n(r, oo))=0.  This yields hi(r, oo)=fx( r )  ( i=0 ,  2) or fy(r)  ( i=  1, 3) in 
view of the square symmetry. In the present case the initial conditions are 
chosen such that the number of y particles (i.e., particles moving in the + y 
or - y  direction) on a line parallel to the y axis is independent of X and 
vice versa. The equilibrium average (ni(r, t ) )  is therefore independent of 
position and time. The reduced densities are defined as 

{fx if i=0 ,  2 
(ne(r, t ) )  = f i =  f y  if i =  1, 3 (2.3) 

where fx and f y  are determined by the initial conditions. The total particle 
density p is given by p = 2 ( f x + f y ) .  

In the sequel we need an expansion of the collision operator I i (n)  in 
fluctuations around equilibrium. We define 

•ni(r, t ) = n i ( r ,  t ) - -  ( n , ( r ,  t ) )  ( 2 .4 )  

3 In terms of the dimensionless units used here we have according to Eq. (2.6) that t o = D x 
varies between 0.5 (p =0.5)  and 6 (p =0.05), and corresponding values for 1o. 
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Combining Eqs. (2.4) and (2.3) with (2.2) gives 

3 

I~(n) = f2oc~nj + ~, (2('~)iil" .~ 6na " "6n~ (2.5) 
2 = 2  

where the Einstein summation convention is used for repeated indices. The 
term (2b ~) =s is the linearized Boltzmann collision operator. It satisfies 
t2 U = Dj~. Furthermore, sgl/;!..~ " is symmetric in the labels i~ ... i~. for it = 2, 3 
and vanishes if at least two indices out of (i~.--i~) are equal. The terms 
with 2 = 0, 4 [the zeroth- and fourth-order terms in Eq. (2.5)] vanish. 

The average number density fix(r, t) of x particles satisfies a diffusion 
equation, Otfix = DxV~fi~, because the number of x particles is conserved, 
but not its flux. If we apply linear response theory to this system according 
to refs. 5 and 6, the collective diffusion coefficient D x is obtained in the form 
of a Green-Kubo formula 

Dx = ~ * ~bx(t) (2.6) 
t = 0  

where the asterisk indicates that the term with t = 0 has a weight 1/2. The 
momentum autocorrelation function Ox(t) is defined as 

(P~(t) P~(O)} 
qlx(t ) - ((6Nx)2 } (2.7) 

Here Px(t) is the total x momentum at time t and Nx the total number of 
x particles, with fluctuation 6Nx = N x -  (N~}: 

Px( t )  = cxiniIr, t) 

ri (2.8) 

Nx(t) = ~ pxini(r, t) 
ri 

with c~i = 6~o- 6t2 and Px~ = 6~o + 6i2- The Green-Kubo formula, Eqs. (2.6) 
and (2.7), for the collective diffusion coefficient can be rewritten as an 
Einstein relation, 

( ( X ( t ) -  X(0)) 2 } = 2 ( (6N , )  2 } Dxt ( t ~  oc) (2.9) 

where X(t) is the x component of the center of mass. The collective diffu- 
sion coefficient D~ describes the growth of the mean-square displacement of 
the center of mass of all particles moving in the x direction. The collective 
diffusion coefficients Dx and Dy should be distinguished from the self- 
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diffusion coefficient D~ = ~2" (v~(t)vx(O)), where v~(t) is the x velocity of 
a single tagged particle. ~7) 

Next we express the momentum autocorrelation function in terms of 
the kinetic propagator F. It follows from Eq. (2.8) that 

(Px(t) Px(O)) = V ~ ~ c~i(6ni(r, t) cSnj(0, 0) )  e~j (2.10) 
r 0 

where we have used translational invariance of ensemble averages. 
Exploiting the fact that initially no spatial correlations are present, we see 
that the equal-time correlation is given by 

(6n,.(r, 0) 6n:(O, 0)> = fi(r, 0) 6 0 . < ( 6 n i ) 2 >  (2.11) 

Here 6(r, r') is the two-dimensional Kronecker delta. The Fermi character 
of the particles gives 

< (6n,)2 > = f i ( 1  - L )  - ~i (2.12) 

so that the normalization of Eq.(2.7) is ((6Nx)Z)=2V~x, with 
Xx -= Xo = x2. Combining this with Eqs. (2.10) and (2.7) yields 

~x(t ) -~- I ~ Z CxiFij([, t) Cxj ( 2 . 1 3 )  

r i j  

where the kinetic propagator is defined as 

P, ( r ,  t )=  / (6ni(r, t)6n+(O, 0) )  (2.14) 
~cj 

Note that no summation is understood here and that the normalization is 
chosen such that ~ ( r ,  0 ) =  6~6(r, 0). 

In order to proceed, it is convenient to use Fourier transforms: 

ni(q, t)= ~ e x p [ - i q ,  r] 6ni(r, t) (2.15) 
r 

so that 

Eli(q, t)=-~ e x p [ - - i q ,  r]  T'q(r, t) 
r 

1 
= Vtcj (n/(q, t) n*(q, 0) )  (2.16) 
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where the asterisk denotes complex conjugation. Equation (2.16) allows us 
to write Eq. (2.13) as 

Cx(t) = �89 ~ cxiFo(q =0,  t) cxj (2.17) 
/j 

The calculation of Cx(t) and Dx has been reduced to the calculation of 
the propagator F(q, t). First we will determine F in Boltzmann approxima- 
tion, thereofter we will apply ring kinetic theory to calculate corrections. 

3. M E A N  F IELD T H E O R Y  A N D  B E Y O N D  

In this section we briefly discuss the results from mean field theory 
and outline the calculations of the one-loop corrections to the kinetic 
propagator. Technically the mean field or Boltzmann approximation con- 
sists of neglecting all quadratic and higher-order terms in 3n in Eq. (2.5)/4) 
This can be interpreted as a mean field approximation, because a fluctua- 
tion 6n from equilibrium only interacts with the average field of all other 
particles while no interaction with other fluctuations are taken into 
account. If we apply the Boltzmann approximation to the equation of 
motion (2.1), we obtain 

5ni(r, t+ 1)= S71(6~j + f2~) 6nj(r, t) (3.1) 

where S~nj(r)=nj(r +e~) is the free streaming operator. We proceed by 
Fourier transforming Eq. (3.1) and iterating it t times. This yields the 
solution 

n,(q, t )= [S-'(q)(1 + s nj(q; O) (3.2) 

where &j(q)= S;(q)3, j= 5~j exp[iq,  e~] is considered as a diagonal matrix. 
The Boltzmann approximation for F(q, t) becomes then 

v~ t) = I s  '(q)(l + o)-I'o. 

and for the momentum autocorrelation function 

0 1 ~x(t) = ~cx. (1 + # ) ' . c x  

(3.3) 

(3.4) 

where an obvious vector and matrix notation has been used. From the 
explicit form (Aol) for the 4 x 4 matrix D~ in Appendix A one verifies that 
the four-vector cxi is an eigenvector: ~cx = -4ts Therefore Eq. (3.4) can 
be reduced to 

r176 = (1 - cox)' (~Ox = 4toy ) (3.5) 
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because c x -cx = 2. Note that 0 ~< co~< 1, so that ~b~ is nonnegative for 
all t. Combining Eqs. (3.4) and (2.6) gives the Boltzmann approximation 
for Dx: 

D ~  ~ (1-COx)' 1 1 1 (3.6) 
t=o 2 COx 2 

which is always positive. Figure 2 shows the Boltzmann result as a solid 
line. 

Next we calculate Fo(q , t) beyond the Boltzmann approximation by 
taking into account the higher-order terms in the expansion of Ii(n) in 
Eq. (2.5). This requires the calculation of the one-loop corrections, i.e., ring 
collision diagrams, in the kinetic propagator Fij(q, t). A similar program 
has been carried out in ref. 4 for the standard cellular automata fluids with 
momentum conservation. As all formal manipulations for the diffusive and 
the fluid type lattice gas automata are identical, we only quote the result: 

r,j(q, t)= r~ t)+ t)+ r])(q, t) 

- + ~ + ~ (3.7) 

A single line represents the Boltzmann propagator F ~ defined in 
Eq. (3.3). The next terms consist of two external F~ and 
a ring diagram with 2 parallel lines ()~=2, 3) representing internal F ~ 
propagators: 

r ~ ) x j =  r~ t) s ; l ( q ) |  t ) |  t) (3.8) 

4 

o 

3 

I I t I I-- 

I I 

0.4 0.5 

0 I I I 
0.I 0.2 0.3 

redueed density f 

Fig. 2. Collective diffusion coefficient Dx versus reduced density f=fx =fy. The mean field 
value (solid line) is compared  with computer  simulations (squares)  measured in a system of 
200 x 200 sites. 
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where no summation over j is implied. The ring diagrams are 

,it (;.) 
~ u  (q, t) = VX ~ ~ cS(q, ql -k- q2 + "'" + q~) 

ql "" �9 q). 
Z 

xD!§ ) .O(?-) - I-[ F~  ,,t . . . .  ~ JJl...J;. ( i , j ; ( q p ,  t )  SjT'(qp) ~Cy,) 
p = l  

Here | denotes a time convolution, defined as 

(3.9) 

z 1 
A(t)| ~ A(z)B(t-z-1)  (3.10) 

T=O 

and f2!~),,~ ... i~. with fl = 2, 3 represents the vertex functions with one ingoing line 
(labeled i) and 2 outgoing lines (labeled i l . . .  ix), as defined in Eq. (2.5) and 
calculated in Appendix A. We also point out that the double convolution in 
Eq. (3.8) vanishes for t ~< 2, because each factor in the convolution requires 
at least one time step since ~ X ) ( q ,  0) vanishes. From this observation we 
conclude immediately that the Boltzmann approximation for F(q, t), and 
consequently also for ~x(t) ,  is exact for 0 ~ t ~< 2. 

The ring approximation for the momentum autocorrelation function 
r in Eq. (2.17), 

6~(t) = &(t) +~,x~ (~lt~,, + ~ ~x3~(t) (3.11) 

only involves the (q = 0) component of the propagator F~(q, t). The first 
term in Eq. (3.11) yields the Boltzmann approximation ~b~ in Eq. (3.5). 
The ring terms can be written as 

t 
r =~ ~ cxiF~X)(q = O, t) Cxj 

ij 

1 t - 2  

= C x i ~ i j  (0, t - r - 2tCx E ~ ' ( 1 - - O ) x )  ~ - 1  (X) 1)  C x j  

where the relations 

(3.12) 

F~ t) Cx = (1 - e)x)' cx 

F~ t) | F~ t) c x = t(1 - ~Ox)'- 1 ex 
(3.13) 

have been used. Similarly, the ring corrections to the Boltzmann diffusion 
coefficient (3.6) follow from the Green-Kubo formula, (2.6) and (3.11), as 

D x = D ~  + D~2) + D ?  ) (3.14) 
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D~ (x~-- (2~cxco2) i ~ c~ ,~ ) (0 ,  t) c~j (2 = 2, 3) (3.15) 
t = l  

4. EXACT C A L C U L A T I O N  OF THE RING I N T E G R A L S  

In this section we present an exact calculation of the ring integrals, 

R(;a(t) ~-) (4.1) - c x ~  (0, t) cxs 

and hence of 06~x)(t) from Eq. (3.12). First we will concentrate on 2 = 2. The 
extension to 2 =  3 is straightforward. From the representation of the 
function 

1 
6(r, r ' ) = ~  ~ expEiq" ( r - i f ) ]  (4.2) 

q 

the diagonal form 
(;4 ~ij  (q, t) in (3.9), one obtains 

R(2)( t )  2 A ! 2 ? A ( 2 7  F 0 = V tit2 JlJ2 E ilJl (q,  t )  Sj l  1(~) Kjl 
q 

0 
X iUi2J2 ( - - q ,  t)  S j 2 1 ( - - q )  Kj2 

= 2AI2,~A(2! ~. ~c 6(r~ , k , ,  r/2J2{m},) 12 JIJ2 Jl J2 1Jl't J't 

x (1 + 0)~,~i (1 + O)k,k~"" (1 + Q)k,_~j, 

x (1 + n),~m,(l + n ) , , , ~ . . .  (1 § ~)m, ,j~ 

where 

of S(q), and the definitions of F ~  t) in (3.3) and 

(4.3) 

A ( 2 ) =  g)(2) 
j ,  - c x i ~  uk (4.4) 

ru{k}~--ei+ej+ek L + ... +ek,_~ 

Because the matrix elements ~ , + 1 , Q , + 3  A(2) and A ~2) vanish (see "*ii ~ ii+2 
Appendix A), the vectors rilslIk}, and r~2j2/,,,} ' in Eq. (4.3) are perpendicular 
to each other. As a consequence 

6(r~ls~},, r,:s:{m},) = 6(ri~s~Ikl,, 0) 6(r~:s~,.} ,, 0) 

in Eq. (4.3). It therefore factorizes into 

R(2)( t )  = 2~c x ~cyA I~  Q,I j , ( t )  Qi2j2(t) A),~) 2 (4.5) 
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with 

Qo.(t) =-- (1 + f2)i~, (1 + f2)<k2... (1 + f2)k ' ,j a(O, r~j{k}, ) (4.6) 

Recall that a summation over all intermediate kn values satisfying the 
a-function constraint is understood in Eq. (4.6). We already conclude that 
the ring integral R(Z)(t) vanishes for even t, since rij{k}, in Eq. (4.4) contains 
an odd number of ei and is therefore nonvanishing. 

In Appendix A we see that the only nonvanishing elements of (1 + f2) 
are the virtual collision terms (ii) and the real collision terms (ii + 2), where 
(1 +f2) i i=  1 -2~c,+ 1 and (1 7t-~'~)ii+z=2K.i+l . Therefore, if (1 +f2)k,k,_ ' 
corresponds to a real collision, then ek~ If (l+f2)k,k,+ ~ is a 
virtual collision element, then ek~ This observation enables us 
to decompose Eq. (4.6) into terms with a fixed number, say ~, of real 
collisions and consequently t -  r virtual collisions, where we sum over all 
possible values of a. Suppose the tlth, t2th,..., t~th terms in the product of 
(1 +s in Eq. (4.6) correspond to real collisions. Then, defining t o = 0  
and t ~ + l = t +  1, we observe that between ti 1 and t~ ( i=  1 ..... a +  1) only 
virtual collisions occur, so that for t odd and ~ = t i -  t,_ 1 : 

QiJ(t)=@+2 i ~-) (1--2tr ~ 

o-=1  

x(2 tq+l )"  ~ ... ~ [ 6 ( T ~ , t + l )  
r I = I to+  1 ~ 1 

X a ( ' C l  - -  "C2 ~-  T3 . . . .  ~ - ' C  - - ' C o . +  1,  0 ) ]  

t - - I  

+aii  ~ (+)(1 2~ci+1 
o - = 2  

x(2~c,+1) ~ ~, ... ~ [a(T.,t+l) 
r l  = 1 r o + l  = 1 

X a ( T  1 - -  ~ 2  -~ "~3 . . . . .  T a - ~  T a +  1,  0 ) ]  (4.7) 

Here T~ = ~1 + ~2 + "'" + %+ 1. We have distinguished between even ( + ) 
and odd ( - )  numbers of or, because the closed polygon condition differs 
slightly for the two cases. Note that we have j = i + 2 for odd a, and j = i 
for even a. Using the relation a(a, b )a(a+ b, 2 T ) =  a(a, T)a(b, t), we find 
that the ( a +  1)-tuple sum over the r's in Eq. (4.7) factorizes into two 
independent sums, with the result 
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= ), ~(2~ci+l)~f2 a + l  t + l  
~=1 2 2 

+6~ ~ + ) ( 1 - 2 ~ C i + l ) '  ~(2tci+l)~f a f • t + l  
~ = a  ' 2 

Here odd(t) vanishes for t even and equals unity for t odd and 

f (k ,n)= ~ ... ~ 6(n;~l+r2+.. .+rk)  k, ninteger 
"el = ~- ~ k  = 1 

;. (2 )2s - ,  
K(2, t) ( 1 - 2 )  2' 1 2., \-(--~-2] f2(s' t) (4.9) 

s = l  

L(2, t ) ~ ( 1 - 2 )  2' ~ \~----~] f ( s , t ) f ( s+ l , t )  
s = l  

We observe that 0 ~< 2 ~< 1/2. Neither the sum variable s nor the time 
variable t is restricted to either odd or even integers. 

We calculate the combinatorial factor f(k, n), defined in expression 
(4.9), using the generating function: 

a(k, z) =_ ~ z"f(k, n) 
n - - k  

�9 Z k 

,4 0, 

= z  k ~ ( k + n - 1 ) !  
~=o n! ( k -  t)! z~ 

Here Newton's binomial formula has been used. Introducing the F -  
function, with F(n) = (n -  1)! for integer n, we see from Eq. (4.10) that 

r(n) 
f(k, n ) -  (4.11) F(k) F(n - k + 1) 

Note that f(k, n) vanishes for n < k. Since f(k, n) is known explicitly, the 
expressions (4.9) for the functions K(), t) and L(2, t) are explicitly known 
as well. From the structure of matrix A (2) (Appendix A) and expression 
(4.5) of the ring integral, we see that 

R~2)(t) = -16tcx~cy(1-2f~)2odd(t)F(t@) (4.12) 
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where 

F ( t ) =  [K(2x~, t ) +  L(2x~, t)][K(2Ky, t)--L(2Ky, t)] (4.13) 

We have calculated the ring integral R(Z)(t) in terms of a function F, which 
is explicitly known in terms of finite sums [see Eqs. (4.13) and (4.9)]. 
Inserting the result into expression (3.12) for ~b~z)(t) yields 

t--2 
eA~2)(t)=--8(1--2fy)2~y ~ " r ( 1 - c o ~ ) ~ - l o d d ( t - r - 1 ) F ( - ( - ~ ' )  (4.14) 

\ z /  

The function ~b~3)(t) can be calculated in analogous manner. Again our 
starting point is Eq. (3.12), but now we take 2 = 3. We start by considering 
the ring integral RC3)(t)= (3) c~i~ o. (0, t) c~j, which reads 

3! 
R(3)(t) = ~-~ AI~)2isA~3]2j3 tcAtq/2tcj3 

• 2 F~ t) Sj 1(ql) r~ t) Sj21(q2) 
qtq2 

•176  t) S j s l ( - - q l - q 2 )  

6A(3) (3) , ,~ g l  ~ ) i l k l  (1 (2)elk: (1 + (2)k ' ~jl : ili2i3AjlJ2J31~jl~J2t~J3[l + -~- . . .  

x (1 + (2)i2t ' (1 + ~2)u2... (1 + s 2 

x (1 + n),~ml(1 + s �9 �9 �9 (1 + n)m,_,j3 

• 6(ril j l{k} ,, ri3j3{m},) ~(ri:j2{l}t, ri3J3{m},) 

= 6A !3), ~ ,2 ,~ Qi~j~(t) ~:j~Qe2j2(t) x:2Q~3j3(t ) x: 3 ~A(3)j~ J2 J3 odd(t) (4.15) 

where Q~(t) is defined in Eq. (4.6). We used the definition --jktA(3) ~ ~x~: ~-O(3)~j~. 
The factorization of the 6's is a consequence of the explicit structure 
(see Appendix A) of A f3) and s analogous to the calculation of RCZ)(t). 
From expression (4.8) for Q~j(t) in terms of the functions K and L, the 
contraction in Eq. (4.15) yields [with T =  l ( t +  1)] 

R(3)(t) = - 32Xxt~2y odd(t) 

x { [-K(2Ky, T)--L(2~y,  T)][K2(2S:x, T) + L2(2~c~, T)]} (4.16) 

Since we know the explicit form of K(2, t) and L(2, t), the value of R(3~(t) 
can be evaluated exactly. The same holds for ~b~3)(t) in Eq. (3.12). 

We have computed exact expressions for ring corrections to the mean 
field result for the momentum autocorrelation function. The expressions 
have been evaluated numerically and the results for D~ 2~ and D~ 3) in 
Eq. (3.15) are shown in Fig. 3. 
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Fig. 3. Ring correct ions  D ~  ) (n = 2, 3) of Eq. (3.14) to the collective diffusion coefficient Dx, 
where n = 2, 3 denotes  the n u m b e r  of  correlated particles involved in the one- loop d iag rams  
of Eq. (3.7). 

5. A S Y M P T O T I C  BEHAVIOR 

In this section we compute the long-time behavior of ~b~')(t) using a 
saddle point method. First we treat the case ;t = 2, next )~ = 3. 

As can be seen from Eqs. (3.12), (4.12), and (4.13), the long-time 
behavior of ~b~2)(t) is determined by the long-time behavior of K()~, t) and 
L(2, t). We will therefore consider an asymptotic expansion of these two 
functions. The starting point of our analysis is the observation that the 
combinatorial factor f ( k , n )  in Eq.(4.11) reaches its maximum in the 
vicinity of k ~ n/2, and is relatively small at k ~ 0 and k ~ n. As a conse- 
quence we expect that the dominant contributions in the expression (4.9) 
for K(2, t) and L(2, t) do not come from the sum boundaries s = 0, 1 ..... and 
s = t, t - 1,..., but from s ~ xt (0 < x < 1 ). We proceed by converting the dis- 
crete sum over s into a (continuous) integration over x, while considering 
f (x t ,  t). Stirling's approximation (plus corrections) of the F functions gives 

f (x t ,  t )= 1 ( x ~l/z 
(2~t) 1/2 \ l - ~ J  [x-X'(1 - x ) - ( l - x ) ' ]  

1 

Substituting Eq. (5.1) and the relation 

f ( x t +  1, t ) f (x t ,  t )= 1 - X  fz(x t ,  t) 
X 
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into the definition of K(2, t) and L(2, t) yields 

l 1 X [ 1 (  1 ) (tl.~) ] 
K(X,t)=-~2fodXl_x[g(x)]2t 1 + ~  1 x (1 - -x )  + O  

1 1 1 dx[g(x)]~t[1 1 (1 x(l_x))+O(~)] L(2, t )=2~(1  - 2 )  f0 + ~  (5.2) 

where 

g(x)=(~) x(1-2)l-~\-l-----x] ( O < x < l  andO~<2~<~) (5.3) 

The function g(x) reaches its maximum value 1 at x = 2, so that [g(x)]  2' 
( t ~ )  is a very steep function in the neighborhood of 2, while it is 
rapidly vanishing away from 2. Therefore we expand log[g(x) ]  in stead of 
g(x) around x = 2. In Appendix B we show that this saddle point method 
yields 

K(2, t) 1 ( /~. ~1/2 I1 
2(~t)1/z \ ] - ~ ]  

1 ( /~ ~1/2 ~1 
2(~t)1/2 \~----,~J t_ 

1 - 1 3 2 +  13)fl ( ~ ) ]  
242(1 - 2 )  t + 0  

7 - 1 3 2 + 1 3 2 2  (~2)]  
242(1 - 2) t + 0  

(5.4) 

Hence Eqs. (4.12) and (4.13) yield the asymptotic behavior of the ring 
integral: 

R(2)(t) = - (1  - 2fy) 2 odd(t) tc x 1 0 0 0 1/2 27ct 2 ~:y Dx(D~Dy) (t--, ~ )  (5.5) 

Here we used 2= = 2~:=, D ~  1/co~-1/2, and 09~ = 4t% with c~ = x, y and 
~ = y ,  x. 

From expression (5.5) of the long-time behavior of the ring integral 
R(2)(t), we can calculate the tail amplitudes of the long-time tail of ~b~z~(t). 
We have already concluded that the ring integral is vanishing for even time 
arguments, so that in expression (3.12) for ~b~2)(t), either the odd or the 
even r's contribute, depending on the parity of t. In the limit t --* ~ the ring 
integral factors out of the r summation, and hence 

~!~(t)-- a_+ tz (t--* ~ )  (5.6) 
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with tail amplitudes a+ (t even) and a (t odd) given by 

(1 - - 2 f  v) 2 ~. _+ (COx) 
a+ = 4~Ky o o o 1/2 - D~(D~Dw) 

Here 

(5.7) 

" o) 2 _ 2 o ) + 2  
= 7 5- t odd 

= ( 5 . 8 )  
2(1 -co)  

~+(a)) co2(2 _ (0)2 teven 

Note that a+ is positive for all o) x. The two amplitudes represent in fact 
high-frequency oscillations in ~b(~2)(t), which are typical for a lattice gas on 
a square lattice (see, e.g., ref. 8). These oscillations are related to the 
so-called dynamic staggered invariants, to which we return in a separate 
publication. (7) 

The long-time behavior of ~b(~3)(t) is determined by the long-time 
behavior of R(3)(t). Inserting the asymptotic expressions of K and L of 
Eq.(5.4) into Eq.(4.16) yields R(3)(t)~t -5/2 (t--+oo). Therefore ~b(x3)(t) 
shows a tail with exponent -5 /2 :  

~b~3~(t) = 1 ~,(COx) 1 
4~3/2 DxDy(Dx)O 0 0 1/215/2 (t-+ m) (5.9) 

as follows from Eq. (3.12). Again the amplitudes for even and odd times 
differ. Note that the long-time limit of Ox(t) is determined by ~b(~2)(t), which 
has a t 2 long-time tail. This tail can be summed [using (3.15)] to give a 
finite correction to the Boltzmann value (3.6) of the collective diffusion 
coefficient. 

6. C O M P U T E R  S I M U L A T I O N S  

The Green-Kubo formalism provides us with a tool to determine the 
collective diffusion coefficient by means of computer simulations, since it 
expresses Dx in terms of the time integral (sum) of (Px(t)Px(O)) [see 
Eqs. (2.6) and (2.7)]. We recall that Px(t) denotes the total momentum 
in the x direction at time t and ( . . . )  an average over a homogeneous 
equilibrium ensemble. Of course D x may also be determined by studying 
the relaxation toward equilibrium of an initial nonequilibrium state. (2) 
Our procedure, however, avoids the ill-defined aging period following the 
preparation of a nonequilibrium initial state. Furthermore, it avoids all 
nonlinear effects, since dissipation coefficients are measured from micro- 
scopic fluctuations around a well-defined equilibrium state. We can there- 
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fore start with a homogeneous equilibrium configuration (where the 
probability to have a particle in an x channel equals fx and in a y channel 
equals fy for all sites) and calculate the total x momentum Px(0). Then we 
let the system evolve in time, while we keep track of Px(t) for every time 
t. The quantities of interest are the products P~(t) P~(O). The average over 
many initial configurations is a good estimate for ~P~(t)P~(O)). The time 
sum then gives according to Eq. (2.6) an experimental value for Dx, which 
can be compared with the renormalized transport coefficient, calculated 
from the ring diagrams. Furthermore, the simulations provide detailed 
values for the momentum autocorrelation at times t = 0, 1, 2 ..... t . . . .  which 
also have been calculated exactly within the approximation of the ring 
kinetic theory. 

It turned out that the available computer power was not enough to 
obtain sufficiently accurate statistics in the measurement of the momentum 
autocorrelation function at times larger than about t m a  x ~-- 30. At present it 
is therefore impossible to observe the theoretically predicted long-time tail 
of the correlation function. However, the statistics is certainly sufficient 
to give a good estimate for D~, since only the first few terms in the 
Green-Kubo sum contribute substantially (if the density is not extremely 
low). 

The simulations of ref. 2 already indicated that the Boltzmann 
approximation of Dx overestimates the actual value. This is confirmed by 
our own simulations, as can be seen in Fig. 2, where we have plotted both 
D o (solid line) and the simulated values of D~ (squares) as a function of the 
reduced density f - f ~ = f y .  We note that the Boltzmann result deviates 
about 10% at f = 0 . 1 0  and even 40% at f = 0 . 5 0 ,  consistent with the 
intuitive argument that recollisions are more significant at higher densities. 
The measured values are obtained in computer simulations on a 200 x 200 
system. We averaged over 2000 independent initial configurations at each 
density f The simulated collective diffusion coefficient are obtained by 
restricting the Green-Kubo sum to t~< tma  • = 30, except at f =  0.10, where 
tr, ax = 40. For longer times the statistics in the measurements of the 
momentum autocorrelation is too poor, and the numerical contributions 
are expected to be insignificant. 

Once we have obtained the values of D~ for different densities by 
simulation, we can directly calculate the deviations from the Boltzmann 
value D o , and compare them with the numerical values of the analytic 
corrections D(x ~), given by the time sum of ~b(~')(t) for 2 = 2, 3 in Eqs. (3.15), 
(4.12), and (4.16). We note that at low densities the correction is 
determined by D(~ 2) only, while at the half-filled lattice the correction 
to the Boltzmann result is completely given by Di  s) (see Fig. 3). We have 
restricted the theoretical Green-Kubo sums to t ~< /'max ----- 200, where the 

822/73/i-2-5 
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Fig. 4. Excess diffusion coefficient D x - D 0 versus reduced density f = f x  =fy, where D o is 
the mean field value. The solid line denotes predictions from ring kinetic theory; the squares 
denote computer simulations on a 200 x 200 lattice, averaged over 2000 runs per data point. 

sums are checked to have converged sufficiently. In Fig. 4 we plot the 
simulated deviation from the Boltzmann result (squares) and the sum 
D x -  D ~ = D ~  ) + D(~ 3) (solid line) as a function o f f  

There is a good agreement between theory and simulations at higher 
densities. At lower densities the simulation data taken at different densities 
do not seem to be consistent with each other, given the error bars 
(denoting one standard deviation) obtained from 2000 independent runs 
per density point. It  looks as if we largely underestimate the errors, for 
which we have no explanation at present. 

The difference between theory and simulations does not come from the 
extra summation range for t ~>/max = 30 neglected in the simulations. At 
densities f = 0 . 1 0  and f = 0 . 2 0  the neglected terms for t~> tmax contribute 
only 4% and 1%, respectively, to the total sum in the analytic expression. 

For  low densities we expect that the simple ring collisions give the 
dominant corrections to the mean field result. For  higher densities, 
however, in general more complicated collision sequences are of impor- 
tance. In view of that, the good agreement between theory and experiment 
at high densities is in fact surprising. 

In summary we conclude that the results of the ring kinetic theory 
applied to this specific diffusive cellular automaton agree on the whole 
quite well with the simulation data. 

7. CONCLUSIONS 

The results of this article can be summarized as follows: 

1. We have derived explicit expressions for non-mean-field contri- 
butions to the momentum autocorrelation function (MACF) ~x(t) of a 
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diffusive two-dimensional lattice gas automaton. They give substantial 
corrections to the Boltzmann or mean field values for the transport 
coefficient. 

2. The MACF has a leading t -2 long-time tail and a subleading t -5/2 
tail. We have explicit expressions for the tail amplitudes in terms of the 
reduced densities fx and fy. Both tails have a different amplitude for even 
and odd times. The different tail amplitudes for even and odd times is typi- 
cal for lattice gases on bipartite lattices, such as the square lattice. Similar 
phenomena have already been observed in computer simulations of the 
velocity autocorrelation function in lattice Lorentz gases, where the tail 
amplitudes at even and odd times differ by an order of magnitude in 
certain density intervals. (9) The mean field theory predicts an exponential 
decay, so that the molecular-chaos assumption is no longer valid. 

3. The Green-Kubo formula for the collective diffusion coefficient D x 
has been calculated from ring kinetic theory. Because the MACF has a t -2 
long-time tail, the rings give a finite contribution to the collective diffusion 
coefficient. 

4. Computer simulations provide experimental values for the 
MACF(t)  and hence for the collective diffusion coefficient. The Boltzmann 
value is found to overestimate the actual values by 10-40%, depending on 
the density considered. Our theoretical corrections to the Boltzmann result 
are in good agreement with the simulation results. 

5. Unfortunately, the theoretically predicted long-time tail in the 
momentum autocorrelation function could not be detected in the computer 
simulations. The reason is the poor statistics in the measurements for long 
times. We have, however, measured a t -2 long-time tail in a similar 
automaton with tagged particle collision rules. This will be reported in a 
separate publication. ~7) 

A P P E N D I X  A.  C O L L E C T I V E  E X P A N S I O N  C O E F F I C I E N T S  

(~ in the expansion, In this appendix we give the coefficients f2iit. 0. 
Eq. (2.5), of the collision operator Ii(n) in Eq. (2.2). For 2 = 1 we find 

/ -  2~cy 0 2Ky i t ~,-~ = ~(1) = 0 --2~C x 0 2 x 
2Xy 0 - 21r 

0 2xx 0 - 2 x x /  

(A.1) 

where ~c~ = f~ ( 1 - f~) with 7 = x, y. 
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The coefficients for 2 = 2 ,  3 only occur contracted with cxi. The 
relevant combinations, 

c.(2!§ . = Q ~ )  _f2(~.) -A!;~) 
X l  n l  �9 �9 �9 t2  0 i l  �9 " - i ) .  2 i l  - �9 �9 i 2  = t l  ' �9 �9 i 2  

are symmetric in the labels (i1"'" iz). This yields for 2 = 2 

A ( Z ) = ( l _ 2 f y  ) - 1  0 1 
0 1 0 

--1 0 1 

In n(3) the only nonvanishing elements are 
�9 * j k l  

A(3) _ _A(3) = 
~(0,1,3) -- �9 ~(2,1,3) 

where re(i, j, k) is a permutation of the integers i, j, k. 

(A.2) 

(A.3) 

(A.4) 

A P P E N D I X  B. L O N G - T I M E  B E H A V I O R  O F K A N D L  

In this appendix we derive the long-time behavior of the functions 
K(2, t) and L(2, t), quoted in Eq. (5.4). K and L will turn out to be identi- 
cal to the dominant (1/.~ft) order as t ~  ~ ,  so that it is necessary to 
calculate the next order in [K(21, t )+L(21 ,  t ) ][K(22,  t ) - L ( 2 2 ,  t)] [-see 
Eq. (4.13)]. The observation that the function [-g(x)] 2t present in expres- 
sion (5.2) is very steep near its maximum at x = 2  for t--* ~ indicates 
a poor  convergence of the Taylor series around this point. It seems, 
therefore, more attractive to expand log[g(x) ] ,  which yields 

log [g (x ) ]  = h(x  - )~) + O[  (x - 2) 5 ] (B.1) 

where 

1 1- -22  y3 1 - - 3 2 + 3 2 2  
h(y )  -~ 22(1 - 2~ y2 + 6)42( 1 _ 2) 2 T~30 ~-~)3 y4 (B.2) 

For  the moment we will concentrate on K(2, t). 
Defining p ( y ) = e x p { - y 2 / [ 2 2 ( 1 - 2 ) ] } ,  which in fact equals g(x)  in 

lowest order (where y = x - )~), and using the identity a = (a - b) + b we see 
from Eq. (5.2) that 

K(2, t) = KI()~ , t) + K2(2, t) (B.3) 
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where 

1 fl --2 dy K1(2, t) = ~ -~. 2+ Y [g(y)2t_p(y)2t] 
1 - 2 - y  

• [-i + O(t-a)] (B.4) 

1 fl-;. 2 + y  dy p(y)2, K2(2, t)=~-7-~ 2 -a 1 - 2 - - y  

1 
1 ( 1 +2)(l_y_2))+O(t-2)]  •  - (y  (B.5) 

with y = x - 2 .  The reason that we do not take into account the O(t -~) 
term in Eq. (B.4), whereas we do in Eq. (B.5), is the fact that /(2(2, t) 
contains the dominant (zeroth-order) contribution, so that the O(t -1) term 
contributes to the first-order corrections. The O(t -1) term present in the 
expression for K1(2, t) would give rise to a correction of second order, and 
may therefore be omitted. 

Using the Taylor expansions 

2 y2 

2+y --37 + y 1 - 2 - y  1 (1_4)2 ~-(1_2)3 I--O(y 3) (B.6) 

and 

g(y)2,_ p(y)2,= exp [ 2(1-y2t-2)J ] 

• 3 
--2) 2y 

(1 -32+322  ) t ] 
623( 1 _ 2) 3 y4 + O(y5) (B.7) 

together with ~-~o dz z 4 exp( - z  2) = 4 3- x/-~, yields 

K,(2, t)_2(~t),/2\~_2 j [_~l l__~t j+O( t 5/2) (B.8) 
1 ( 2 ~'/=[ 1--42+22 l 

K2(2, t)-z(rct)l/Z\~_2j 1 62(1_2) t j + 0 (  t 5/z) (B.9) 

Adding the two results [-see Eq. (B.3)] indeed gives the already mentioned 
asymptotic behavior of K(2, t). 

A similar splitting can be done for L(2, t): 

L()~, t) --= L1(2 , t) + L2(2 , t) (B.10) 
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1 
d y [ g ( y ) 2 ' - p ( y ) 2 ' ] [ 1  + O ( t - ~ ) ]  (B.11) t l ( ,~ , t) = 27z(1 - ).) _z 

1 f~ dy p ( y )  2' 
L2(L  t) - 2 ,~( i - -  ~) _~ 

, , .~i)+o(t-2)]. j •  (y + 2 ) ( 1 -  y -  (B.12) 

The same line of a rgument  can be followed as in the calculat ion of K(2, t): 

L l ( J , t ) =  1 ( )~ ~1/2 [ 1 - -  32 + 3).21 
2(~t)l/2\-f~--~_~j [_ -8-s j + O ( t - 5 / 2 )  (B.13) 

1 ( 2 ) , / 2 [  1_2+_22_]  
L2(2, t)-2(~t)1/2\--~-~-~_)~ j 1 6 2 ( l _ 2 )  t j + O ( t - 5 / 2 )  (B.14) 

F r o m  Eq. (B.10) we easily verify that  Eq. (5.4) indeed represents the 
long-t ime behavior  of L(2, t) up to the desired order. 
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